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aminium ion catalyzed reactions is clearly limited.

In conclusion, our results illustrate that cation radical
mechanisms for isomerizations in Bronsted acids + di-
oxygen have not been rigorously excluded. Although the
mechanism of the electron-transfer step is not fully un-
derstood, it likely involves a substrate—dioxygen charge-
transfer complex.” Finally, we should warn that an
analogous mechanistic dilemma may arise for Lewis acid
promoted reactions. Many Lewis acids are known to
promote one-electron oxidation (e.g. SbCl;, AlCl;, and
BF;).4 It will be interesting to see how general the
Bronsted acid and Lewis acid promoted electron-transfer
reactions are.
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Homolytic Alkyl Group Transfer Reaction of
Photoactivated Alkylcobaloximes into Thiols

Summary: Alkyl groups of alkylcobaloximes were trans-
ferred to alkylthiols by irradiation of alkylcobaloxime and
thiol under anaerobic conditions; a radical route via ho-
molytic substitution between alkylcobaloxime and di-
sulfide, formed during the reaction, is proposed.

Sir: Currently, the reactivity of C-Co bond in alkyl-
cobaloxime has received much attention as a stable or-
ganometallic reagent and also as a cobalamin (vitamin B,,)
model.! We have investigated? the chemical reactivity of
photoactivated alkylcobaloxime. The dealkylative sub-
stitution reaction of alkylcobaloxime has frequently been
utilized in organic syntheses.!*® Particularly, the reaction
of organocobalt complexes with thiols has received much
attention with respect to the function of methionine
synthetase, a cobalamin (vitamin B,) dependent enzyme.
It has not been shown, however, whether the methyl-
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transfer reaction of the enzymic reaction proceeds in a
radical or in an ionic manner. Schrauzer et al. have sug-
gested**® the ionic mechanism in the methionine formation
reaction with methylcobaloxime and homocysteine in al-
kaline media. The attempted® homolytic alkyl-transfer
reaction of alkylcobaloxime to alkylthiol has failed so far.

In this paper, we present the first successful example
involving the homolytic alkyl-transfer reaction from al-
kylcobaloxime to some thiols induced by the cleavage of
C-Co bond in alkylcobaloxime by irradiation with a visible
light.

A mixture of alkylbis(dimethylglyoxymato)pyridine-
cobalt(IIT) (1)® (1.5 mmol), ethyl mercaptoacetate (2) (1
mmol), and 15 mL of CH,Cl, in a Schlenk tube was de-
oxygenated and replaced with argon gas by the freeze-
pump-thaw technique. The reaction vessel was irradiated
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alkyibis(dimethylglyoxymato)pyridinecobait (1I1)
R = methyl (1&), benzyl (1b); py = pyridine

with a tungsten lamp (400 W) for 24 h at 35 °C. The
reaction proceeds according to eq 1, and the results are
summarized in Table I. Product yield and conversion
were determined by NMR.$

RCo(DH)py (1)

v

RSCH,CO,Et + (SCH,CO,Et), (1)
3 4
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Table I. Reaction of Photoactivated Alkylcobaloxime and Ethyl Mercaptoacetate®

yield, %
run cobaloxime temp, °C time, h 3 4 conversion, %
1 la 35 24 3 27 79
2 1b 35 24 52 15 100
3 35 48 61 6 100
4 -20 24 55 18 100
5 -20 24 0 76 76

¢ Conditions: alkylcobaloxime, 1.5 mmol; thiol, 1.0 mmol; CH,Cl,, 15 mL; tungsten lamp (400 W), distance from lamp to reaction vessel

20 cm, under an argon atmosphere. °Dark reaction.

In every case, both ethyl 2-(alkylthio)acetate (3) and
bis[(ethoxycarbonyl)methyl] disulfide (4) were obtained
(runs 1-4). Methylcobaloximine (1a) showed a lower re-
activity than benzylcobaloxime (1b) (run 2) because of its
higher dissociation energy'® of the Co-C bond and insta-
bility of methyl radical formed. The yield of sulfide 3
increased by extending the reaction (run 3). The reaction
proceeded similarly even at a low temperature under ir-
radiation (run 4), but in the dark, the reaction at low
temperature failed to give the sulfide 3 and the only
product was disulfide 4 (run 5). Besides 3 and 4, a con-
siderable amount of [[(ethoxycarbonyl)methyl]thio]bis-
(dimethylglyoxymato)pyridinecobalt(III) 5 was detected
in the reaction mixture by the 'H NMR measurement.
Similarly, benzyl-transfer reaction occurred when 1b was
treated with other thiols such as benzenethiol, a-toluen-
ethiol, and 2-mercaptoethanol.”

The reaction course was assumed as in Scheme I by
considering below additional results and discussions.

In the first step of this reaction (path a), the abstraction
of hydrogen by an alky! radical formed from thermal- or
photoactivated alkylcobaloxime gives alkane and (alkyl-
thio)cobaloxime 5. In the case of the reaction of benzyl-
cobaloxime (1b) and thiol 2, a slight amount of toluene was
detected by gas chromatography.? The bimolecular ho-
molytic substitution reaction between 1 and 2, which is an
assumed path of direct alkyl sulfide formation, will not
occur for high dissociation energy of RS~H bond.®

(Alkylthio)cobaloxime 5 prepared from sodium thiolate
and chloro(pyridine)cobaloxime® worked as a catalyst for
the formation of disulfide 4 from 2,1 where 5 worked
catalytically just as (phenylthio)cobaloxime has been re-
ported!! to catalyze the hydrogen evolution and diphenyl
disulfide formation from benzenethiol under irradiation.
The result of the disulfide formation in Table I would be
ascribed this catalytic reaction. In the second step, the
cobaloxime 5 reacts with 2 (path b) to give 4 and hydri-
docobaloxime, of which further reaction with 2 gives 5 and
hydrogen (path c).

Disulfide 4 reacted with 1.5 M benzylcobaloxime (1b)
at —20 °C under the irradiation condition to give sulfide
3 in 106% yield. Sulfide 3 would be formed by the bi-
molecular homolytic displacement reaction!? of 1 and 4
(path d). Photoactivation is responsible for the decreased
yield of disulfide by extending the reaction time (Table
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I, runs 2 and 3). In addition, the above result suggests the
(alkylthio)cobaloxime 5 formed in the reaction is also re-
acted with benzylcobaloxime (1b) to give sulfide 3. The
equimolar reaction of 1b and (alkylthio)cobaloxime 5 gave
sulfide 3 in 14% yield under the same reaction condition.
In parallel to the main path (d) for disulfide formation,
path e is presumed to exist.
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Catalytic Asymmetric Induction in Enantioselective
Conjugate Addition of Dialkylzincs to Enones'

Summary: Chiral complex derived in situ from nickel
acetylacetonate and N,N-dibutylnorephedrine catalyzed
the asymmetric addition of dialkylzinc reagents to enones
to afford optically active 8-substituted ketones in moderate
enantiomeric excesses.

Sir: Increasing interest has been centered on catalytic
asymmetric carbon-carbon bond forming reaction.! Al-
though many methods have been reported on the asym-
metric conjugate addition of organometallic reagents to
a,B-unsaturated carbonyl compounds,? all methods require
at least a stoichiometric amount of chiral auxiliary. No
attempts have been made in the area of catalytic asym-
metric conjugate addition of organometallic reagents to
a,B-unsaturated carbonyl compounds.

During our continuing study on asymmetric 1,2-addition
of dialkylzincs to aldehydes,? we found the first catalytic
asymmetric conjugate addition of dialkylzincs to enones
catalyzed by a chiral nickel complex. Chiral nickel catalyst
2 was prepared by stirring a mixture of nickel acetyl-
acetonate [Ni(acac),] (1 equiv)* and either (1S,2R)-(-)- or
(1R,28)-(+)-2-(N,N-dibutylamino)-1-phenylpropan-1-ol (1)
(N,N-dibutylnorephedrine) (1.2 equiv)® in toluene (eq 1).
Although we have not yet managed to prepare a charac-
terizable chiral N,N-dibutylnorephedrinato complex of
nickel, asymmetric conjugate additions with in situ gen-
erated chiral nickel complexes 2 have been encouraging
(eq 2). As shown in Table I, conjugate addition of di-
ethylzinc (4b) to chalcone (3a) using 2 [prepared from
(1S,2R)-(-)-1] as catalyst [0.50 mol equiv to 3a] afforded
optically active (R)-(-)-1,3-diphenylpentan-1-one (5b) in
75% isolated yield and in 45% enantiomeric excess (ee)
as determined by HPLC analysis using chiral column
(Daicel Chiralcel OD) (Table I, entry 2). Without 2, no

t A preliminary account of these results has been reported at the
56th National Meeting of the Chemical Society of Japan, Tokyo,
1988; Paper 1XII B37.
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